Глава 3. Преобразования Фурье с дискретным временем

3.1. Дискретное во времени преобразование Фурье (ДВПФ)

Как уже отмечалось, спектр последовательности отсчетов $x(k\Delta t)$, k=0,1,2,..., представляет собой периодическое (с периодом $f_{\pi}=1/\Delta t$) повторение исходного спектра X(f).

$$X_{_{\Pi}}(f) = \sum_{m = -\infty}^{\infty} X(f - m f_{_{\Pi}})$$
(3.1.1)

Будем считать, что все условия теоремы Котельникова выполнены и размножение спектра, вызванное дискретизацией, происходит без наложения.

Периодическую функцию (3.1.1) представим в виде ряда Фурье (по частоте)

$$X_{\pi}(f) = \sum_{k=-\infty}^{\infty} c_{-k} e^{-jk(2\pi/f_{\pi})f} = \sum_{k=-\infty}^{\infty} c_{-k} e^{-j2\pi f k \Delta t},$$
(3.1.2)

де коэффициенты Фурье равны

$$c_{-k} = (1/f_{\pi}) \int_{-f_{\pi}/2}^{f_{\pi}/2} X_{\pi}(f) e^{j2\pi f k \Delta t} df = \Delta t x(k \Delta t).$$
 (3.1.3)

Подставляя эти коэффициенты в (3.1.2), получим

$$X_{\pi}(f) = \Delta t \sum_{k=-\infty}^{\infty} x(k\Delta t) e^{-j2\pi f k\Delta t}.$$
 (3.1.4)

Это есть прямое дискретное во времени преобразование Фурье (ДВПФ) последовательности x(k). Обратное ДВПФ в соответствии с (2.3) будет

$$x(k \Delta t) = \int_{-f_{\pi}/2}^{f_{\pi}/2} X_{\pi}(f) e^{j2\pi f k \Delta t} df.$$
 (3.1.5)

Выражения (3.1.4) и (3.1.5) определяют пару дискретного во времени преобразования Фурье (ДВПФ). Прямое ДВПФ $X_{_{II}}(f)$ – континуальная и периодическая функция частоты (с периодом $f_{_{II}}$):

$$X_{_{\mathrm{I}}}(f) = \sum_{m=-\infty}^{\infty} X(f - mf_{_{\mathrm{I}}}).$$

В выражениях (3.1.4) и (3.1.5) удобно принять $\Delta t = 1$ и ввести нормированные частоты $v = f / f_{_{\rm Л}}$ (доли частоты дискретизации). Тогда будем иметь соответственно

$$X(v) = \sum_{k=-\infty}^{\infty} x(k) e^{-j2\pi vk},$$
(3.1.6)

$$x(k) = \int_{-1/2}^{1/2} X(v) e^{j2\pi vk} dv.$$
 (3.1.7)

Пару ДВПФ символически обозначим следующим образом:

$$x(k) \Leftrightarrow X(v)$$
.

Ещё раз подчеркнём, что прямое ДВПФ $X(\nu)$ представляет континуальную и периодическую функцию частоты (с периодом $v_{_{\rm I}}=1$), а x(k) — непериодическая последовательность.

Отметим ещё две часто используемые формы записи ДВПФ. Положив в (3.1.4) и (3.1.5) $2\pi f = \omega$, будем иметь

$$X_{\mu}(\omega) = \Delta t \sum_{k=-\infty}^{\infty} x(k \, \Delta t) \, e^{-j\omega k \, \Delta t}, \qquad (3.1.8)$$

$$x(k\Delta t) = \frac{1}{2\pi} \int_{-\omega_{\pi}/2}^{\omega_{\pi}/2} X_{\pi}(\omega) e^{j\omega k\Delta t} d\omega.$$
 (3.1.9)

$$X(\theta) = \sum_{k = -\infty}^{\infty} x(k) e^{-j\theta k},$$
(3.1.10)

$$x(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\theta) e^{j\theta k} d\theta.$$
 (3.1.11)

Прямое ДВПФ $X(\theta)$ – континуальная, периодическая функция частоты (с периодом 2π), а x(k) – непериодическая последовательность.

Аргумент θ физически означает набег фазы (в радианах) за такт дискретизации. Его иногда называют (не совсем удачно) нормированной частотой.

Основные свойства и теоремы ДВПФ

В приложениях и алгоритмах, основанных на вычислении преобразования Фурье, в идеале требуется именно дискретное по времени преобразование Фурье (ДВПФ). Однако в цифровых системах обработки сигналов требуется конечное число отсчётов и по времени, и по частоте. Адекватным этому требованию является дискретное преобразование Фурье (ДПФ), которое, как мы убедимся далее, представляет собой масштабированные отсчёты ДВПФ, вычисленные на определённых частотах. ДПФ играет центральную роль в реализации большого числа алгоритмов цифровой обработки сигналов, в том числе цифрового спектрального анализа. Это обеспечивается эффективным методом вычисления ДПФ, который называется быстрым преобразованием Фурье (БПФ) и подробно рассматривается в главе 4. Вот почему связь ДВПФ и ДПФ важна для понимания сути Фурье-анализа сигналов. По этой же причине рассмотрим свойства и особенности ДВПФ.

Сходимость ДВПФ

Рассмотрим пару ДВПФ (3.1.10) и (3.1.11). Мы пока еще не доказали, что эти формулы взаимно обратимы. Подставим (3.1.10) в правую часть(3.1.11), тогда

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{m=-\infty}^{\infty} x(m) e^{-j\theta m} \right) e^{j\theta k} d\theta = \hat{x}(k). \tag{3.1.12}$$

Нам нужно показать, что $\hat{x}(k) = x(k)$, если функция $X(\theta)$ определена формулой (3.1.10). Если бесконечный ряд под интегралом в (3.1.12) равномерно сходится на множестве определения θ , то его можно почленно проинтегрировать, т. е.

$$\hat{x}(k) = \sum_{m=-\infty}^{\infty} x(m) \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\theta(k-m)} d\theta \right).$$

Интеграл в круглых скобках равен

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\theta(k-m)} d\theta = \frac{\sin \pi (k-m)}{\pi (k-m)} = \mathbf{1}(k-m) = \begin{cases} 1, & m=k, \\ 0, & m \neq k. \end{cases}$$
(3.1.13)

Это определение единичного импульса, тестового сигнала в системах с дискретным временем. Реакция линейной дискретной системы (ЛДС) на единичный импульс есть импульсная характеристика системы h(k), (при нулевых начальных условиях).

Таким образом,

$$\hat{x}(k) = \sum_{m=-\infty}^{\infty} x(m) \mathbf{1}(k-m) = x(k)$$
, ч. т. д.

Вопрос о представимости сигнала формулой (3.1.11) равносилен вопросу о сходимости ряда (3.1.10). Выясним теперь условия, при которых ряд (3.1.10) сходится, т. е.

$$|X(\theta)| < \infty$$

где $X(\theta)$ – предел при $N \to \infty$ частичных сумм

$$X(\theta, N) = \sum_{k=-N}^{N} x(k) e^{-j\theta k}.$$

Достаточное условие сходимости определяется следующим образом:

$$\left|X(\theta)\right| = \left|\sum_{k=-\infty}^{\infty} x(k) e^{-j\theta k}\right| \le \sum_{k=-\infty}^{\infty} \left|x(k)\right| \left|e^{-j\theta k}\right| \le \sum_{k=-\infty}^{\infty} \left|x(k)\right| < \infty.$$

Таким образом, для абсолютно суммируемой последовательности x(k) ДВПФ $X(\theta)$ определено на всей числовой прямой. Более того, можно показать, что по признаку Вейерштрасса ряд (3.1.10) равномерно сходится к непрерывной функции от θ . Итак, абсолютная суммируемость последовательности x(k) является достаточным условием существования ДВПФ. Это условие гарантирует также равномерную сходимость. Ясно, что любая последовательность конечной длины абсолютно суммируема и для неё можно найти ДВПФ. Поэтому системы с конечной импульсной характеристикой h(k) (например, КИХ-фильтры) в силу её абсолютной суммируемости имеют непрерывную частотную характеристику

$$H(\theta) = \sum_{k=0}^{N-1} h(k) e^{-j\theta k}$$

и всегда устойчивы. Система устойчива, если её реакция на любой ограниченный по амплитуде сигнал ограничена (при конечных начальных условиях). Необходимым и достаточным условием устойчивости является абсолютная суммируемость импульсной характеристики. Приведём несколько примеров.

Пример 3.1.1.Пусть $x(k) = a^k \sigma(k)$, где $\sigma(k)$ — дискретная функция включения. ДВПФ этой последовательности

$$X(\theta) = \sum_{k=-\infty}^{\infty} x(k) e^{-j\theta k} = \sum_{k=0}^{\infty} a^k e^{-j\theta k} = \sum_{k=0}^{\infty} \left(a e^{-j\theta} \right)^k = \frac{1}{1 - a e^{-j\theta}},$$

если |a|<1. Это неравенство является также критерием абсолютной суммируемости последовательности x(k), т. е.

$$\sum_{k=0}^{\infty} \left| a \right|^k = \frac{1}{1 - |a|} < \infty, \ \text{если только} \ \left| a \right| < 1.$$

Некоторые последовательности не являются абсолютно суммируемыми, но обладают конечной энергией:

$$\sum_{k=-\infty}^{\infty} \left| x(k) \right|^2 < \infty.$$

Такие последовательности с суммируемым квадратом могут быть представлены в виде

$$x(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\theta) e^{j\theta k} d\theta,$$

если мы откажемся от равномерной сходимости ряда

$$X(\theta) = \sum_{k=-\infty}^{\infty} x(k) e^{-j\theta k}.$$

В этом случае мы имеем сходимость в среднеквадратичном, т. е.

$$\lim_{N\to\infty}\int_{-\pi}^{\pi}\left|X(\theta)-\sum_{k=-N}^{N}x(k)e^{-j\theta k}\right|^{2}d\theta=0.$$

Пример 3.1.2. Определим импульсную характеристику $h_0(k)$ идеального фильтра нижних частот (ИФНЧ). Его частотная характеристика, равная на промежутке $[-\pi, \pi]$

$$H_0(\theta) = \begin{cases} 1, & |\theta| < \theta_c, \\ 0, & \theta_c < |\theta| \le \pi, \end{cases}$$

является периодической с периодом 2π . Импульсная характеристика находится с помощью обратного ДВПФ:

$$h_0(k) = \frac{1}{2\pi} \int_{-\theta}^{\theta_c} e^{j\theta k} d\theta = \frac{1}{j2\pi k} (e^{j\theta_c k} - e^{j\theta_c k}) = \frac{\sin \theta_c k}{\pi k}, \quad -\infty < k < \infty.$$
 (3.1.14)

Поскольку импульсная характеристика некаузальная, т. е. $h_0(k) \neq 0$ при k < 0, ИФНЧ нереализуем. Кроме того, последовательность $h_0(k)$ не является абсолютно суммируемой. Члены последовательности хоть и стремятся к нулю при неограниченном возрастании k, но не быстрее чем 1/k. Это происходит в результате разрыва функции $H_0(\theta)$ в точках $\theta = \pm \theta$. По этой причине ряд

$$\sum_{k=-\infty}^{\infty} \frac{\sin \theta_c k}{\pi k} e^{-j\theta k}$$

сходится неравномерно на числовой оси. Для того чтобы убедиться в этом, достаточно рассмотреть поведение усечённого ряда

$$H_0(\theta, N) = \sum_{k=-N}^{N} \frac{\sin \theta_c k}{\pi k} e^{-j\theta k}.$$
 (3.1.15)

График функции $H_0(\theta, N)$ представлен на рис. 3.1.1 для двух значений N.

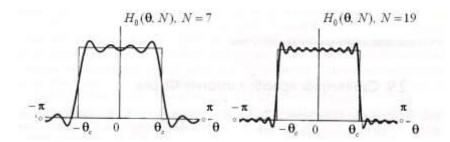


Рис. 3.1.1. Графики частичных сумм ДВПФ

Видно, что графики заметно пульсируют вблизи точек разрыва $H_0(\theta)$ (явление Гиббса), но амплитуда пульсаций не уменьшается с ростом N. Можно показать, что максимальная амплитуда пульсаций не стремится к нулю при $N \to \infty$. Пульсации сжимаются по горизонтали к вертикальному отрезку, проведённому через точку разрыва $\theta = \pm \theta_c$. Следовательно ряд (3.1.15) сходится к разрывной функции $H_0(\theta)$ неравномерно. Однако последовательность (3.1.14) суммируема с квадратом, соответственно $H_0(\theta, N)$ сходится к $H_0(\theta)$ в среднеквадратичном, т. е.

$$\lim_{N\to\infty}\int\limits_{-\pi}^{\pi}\left|H_{0}(\theta)-H_{0}(\theta,N)\right|^{2}d\theta=0.$$

При больших N функции $H_0(\theta, N)$ и $H_0(\theta)$ отличаются лишь в точках $\theta = \pm \theta_c$. Поведение частичных сумм ДВПФ имеет важное значение при разработке дискретных фильтров.

Некоторые свойства ДВПФ приведены в таблице 3.1.1.

Таблица 3.1.1

	Последовательность	ДВПФ
	x(k)	X(v)
	x(k-l)	$X(v) \cdot \exp(-j 2\pi v l)$
1	(теорема запаздывания)	
	$x(k) \exp(j2\pi v_o k)$	$X(v-v_o)$
2	(теорема смещения)	
	Свертка	Произведение
3	$\sum_{k=-\infty}^{\infty} x(k) h(l-k)$	X(v)H(v)
	(теорема о свертке)	
	Произведение	Свертка (периодическая)
4	x(k)y(k)	$\int_{-1/2}^{1/2} X(v') Y(v-v') dv'$
	$\sum_{k=-\infty}^{\infty} x(k) ^2 = \int_{-1/2}^{1/2} X(v) ^2 dv$ $\sum_{k=-\infty}^{\infty} x(k) y^*(k) = \int_{-1/2}^{1/2} X(v) Y^*(v) dv$ (равенство Парсеваля)	
5		
	Единичный импульс	
6	$1(k) = \begin{cases} 1, & k = 0, \\ 0, & k \neq 0. \end{cases}$	1

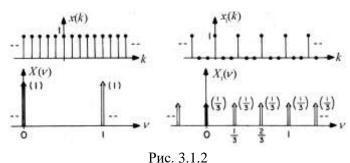
_		1
	Периодическая последо-	Периодическая последова-
7	вательность единичных	тельность δ-функций (площа-
	импульсов	ди равны 1)
	$\sum_{m=-\infty}^{\infty} 1(k-m)$	$\sum_{n=-\infty}^{\infty} \delta(v-n)$
	-3 -2 -1 0 1 2 3 A	1 1 1 2 3 n
8	$\exp(j2\pi v_o k), -\infty < k < \infty$	$\sum_{n=-\infty}^{\infty} \delta(v-v_o-n)$
9	Последовательность	Последовательность δ-
	единичных импульсов с	функций с периодом $1/L$
	периодом L	(площади равны 1/L)
	$\sum_{m=-\infty}^{\infty} 1(k-mL)$	$(1/L)\sum_{n=-\infty}^{\infty}\delta(v-n/L)$
	Изменение масштаба	
10	$\sum_{k=-\infty}^{\infty} x(m) 1(k-mL)$	X(vL)
	kx(k)	$\underline{j} dX(v)$
	<i>π</i> , (π)	$\frac{1}{2\pi} \frac{1}{dv}$
11	умножение на <i>k</i>	
		дифференцирование по ча-
		стоте

Все эти свойства легко доказываются непосредственным вычислением.

Упражнение 3.1.1. Докажем, например, свойство 9. Обозначим

$$x(k) = \sum_{m=-\infty}^{\infty} \mathbf{1}(k-m) \text{ M } x_1(k) = \sum_{m=-\infty}^{\infty} \mathbf{1}(k-mL).$$

Последовательность $x_1(k)$ получается, если между каждой парой отсчётов последовательности x(k) вставить L-1 нулей (рис. 3.1.2).



Вычисление ДВПФ дает (с учётом теоремы запаздывания)

$$X_{1}(v) = \sum_{k=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \mathbf{1}(k - mL) e^{-j2\pi vk} =$$

$$= \sum_{m=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \mathbf{1}(k - mL) e^{-j2\pi vk} = \sum_{m=-\infty}^{\infty} e^{-j2\pi vLm}.$$

Это есть ряд Фурье (по оси v) периодической последовательности δ -функций с периодом 1/L, т. е.

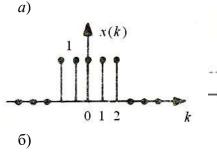
$$X_1(v) = (1/L) \sum_{n=-\infty}^{\infty} \delta(v - n/L).$$

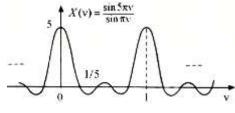
Для случая L=3 свойство 9 иллюстрируется на рис. 3.1.2.

Упражнение 3.1.2. Обсудим теперь свойство 10. В качестве примера рассмотрим последовательность x(k) из пяти отсчётов одиночного прямоугольного импульса. ДВПФ этой последовательности

$$X(\nu) = \frac{\sin \pi \, N\nu}{\sin \pi \nu} = \frac{\sin 5\pi \, \nu}{\sin \pi \nu}.$$

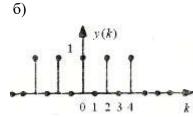
Функция непрерывного аргумента X(v) является периодической по оси v с периодом, равным 1 (рис. 3.1.3a). Образуем новую последовательность y(k) путем добавления L–1 нулей между каждой парой отсчетов x(k):

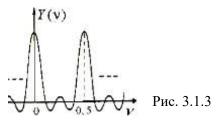




$$y(k) = \sum_{m=-\infty}^{\infty} x(m) \mathbf{1}(k - mL).$$

Эта последовательность показана на рис. 3.1.36 для случая L=2.





Новая последовательность с измененным масштабом имеет ДВПФ

$$Y(v) = \sum_{k=-\infty}^{\infty} y(k) e^{-j2\pi vk} = \sum_{k=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} x(m) \mathbf{1}(k-mL) e^{-j2\pi vk} =$$

$$= \sum_{m=-\infty}^{\infty} x(m) \sum_{k=-\infty}^{\infty} \mathbf{1}(k-mL) e^{-j2\pi vk} = \sum_{m=-\infty}^{\infty} x(m) e^{-j2\pi vmL} = X(vL).$$

Функция Y(v) периодична с периодом 1/L и сжата по оси v в L раз. Случай L=2 изображен на рис. 3.1.36.

Задачи к лекции 6 марта (2 часть) 2018 г.

1. Найти и изобразить по модулю ДВПФ для сигнала

$$x(k) = \begin{cases} A \sin\left(\frac{2\pi}{N}k\right), 0 \le k < N = 8, \\ 0, \text{ при других } k. \end{cases}$$

2. Определить обратное ДВПФ для следующих спектральных функций:

a)
$$X_1(\nu) = \sum_{k=-\infty}^{\infty} \delta(\nu + k);$$
 6) $X_2(\nu) = 1 + 2\sum_{k=0}^{N} \cos 2\pi \nu k;$

$$\text{B)} \quad X_3(\nu) = \frac{1 - e^{j2\pi\nu \left(N + 1\right)}}{1 - e^{j2\pi\nu}}; \qquad \qquad \text{f)} \quad X_4(\nu) = \frac{j\alpha e^{j2\pi\nu}}{\left(1 - \alpha e^{j2\pi\nu}\right)^2}, \ \left|\alpha\right| < 1.$$